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SUMMARY

Recent polio outbreaks in Syria and Ukraine, and isolation of poliovirus from asymptomatic carriers in
Israel have raised concerns that polio might endanger Europe. We devised a model to calculate the
time needed to detect the first case should the disease be imported into Europe, taking the effect of
vaccine coverage – both from inactivated and oral polio vaccines, also considering their differences – on
the length of silent transmission into account by deriving an ‘effective’ case/infection ratio that is
applicable for vaccinated populations. Using vaccine coverage data and the newly developed model,
the relationship between this ratio and vaccine coverage is derived theoretically and is also numerically
determined for European countries. This shows that unnoticed transmission is longer for countries with
higher vaccine coverage and a higher proportion of IPV-vaccinated individuals among those
vaccinated. Assuming borderline transmission (R= 1·1), the expected time to detect the first case is
between 326 days and 512 days in different countries, with the number of infected individuals between
235 and 1439. Imperfect surveillance further increases these numbers, especially the number of infected
until detection. While longer silent transmission does not increase the number of clinical diseases, it can
make the application of traditional outbreak response methods more complicated, among others.
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INTRODUCTION

Poliomyelitis is an acute viral infectious disease caused
by poliovirus, an enterovirus belonging to the family
Picornaviridae. Most human poliovirus infections re-
main asymptomatic, with the infection localized to
oropharynx and the gut or symptomatic but only pre-
senting as mild disease with no sign of central nervous
system invasion [1]. However, in the remaining 1–2%
of cases, poliovirus enters and replicates in the

motor neurons of the anterior horn cells of the spinal
cord, the brainstem or the motor cortex of the brain,
causing destruction of the affected neurons, which
results, among other things, in acute flaccid paralysis
(AFP) [2].

There are two types of vaccines available against
polio: inactivated polio vaccine (IPV) and live attenu-
ated oral polio vaccine (OPV) [3]. OPV provides
strong enteric mucosal immunity thereby providing
good protection against carriage and shedding of the
virus, while IPV results only in systemic immunity
protecting against clinical disease, but much less
against the enteral shedding of the virus [4].

With the introduction of safe and effective vaccines,
polio became a technically eradicable disease [5] and

* Author for correspondence: Dr T. Ferenci, John von Neumann
Faculty of Informatics, Physiological Controls Group, Óbuda
University, H-1034, Bécsi út 96/b, Budapest, Hungary.
(Email: ferenci.tamas@nik.uni-obuda.hu)

Epidemiol. Infect. (2016), 144, 1933–1942. © Cambridge University Press 2016
doi:10.1017/S0950268816000078

http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268816000078&domain=pdf


the global efforts led to a marked decrease in disease
incidence and the number of endemic countries
[6, 7]. However, the very final step towards complete
eradication turned out to be especially difficult [8].

In particular, an outbreak at the end of 2013 in the
Middle East with 36 cases of polio in Syria and isola-
tion of wild-type poliovirus 1 from sewage and faecal
samples from asymptomatic carriers in Israel have
raised concerns that the polio might endanger
Europe [9]. These fears were widely raised again
when circulating vaccine-derived poliovirus 1 caused
two cases of polio (as of September 2015) in
Ukraine [10].

Recently, Eichner & Brockmann [11] warned that
infected individuals can spread the virus unrecognized
in an IPV-vaccinated environment (due to the lack of
mucosal immunity) and calculated how long the virus
can spread across the population, assuming a border-
line effective reproduction number R= 1·1, before one
AFP case is identified and an outbreak is detected.

They stated, inter alia, that ‘only one in 200 unvac-
cinated individuals infected with WPV1 will develop
acute flaccid paralysis (case/infection ratio C =
0·005)’ and that within n transmission generations,
(Rn+1− 1)/(R− 1) is the cumulative number of infec-
tions that are expected to be seen. However, they
went on to calculate the number of AFP cases by
multiplying those two factors. This – as made explicit
by the original authors: ‘[the application of IPV] fur-
ther reduces the ratio of acute flaccid paralysis to in-
fection’ – is only an approximation, as part of the
infected people, in some countries the majority, will
be (IPV-) vaccinated. Thus, the ‘effective’ case/infec-
tion ratio in an – at least partly – IPV-vaccinated
population will be lower, making the results (i.e. the
length of unnoticed transmission) even more marked.

Similar problems have already been investigated in
the literature, for instance Eichner & Dietz [12] pre-
sented a comparable analysis; however, they relied
on a stochastic model described with differential equa-
tions, which is more realistic, but much less interpret-
able. In contrast, the simple model of Eichner &
Brockmann is more directly interpretable. A novel
model will be now devised to take the aforementioned
aspect into account, thereby enhancing the validity of
the simple model, but still retaining its perspicuity.
The consequences of the application of the new
model will be illustrated in various European coun-
tries using empirical data.

Although borderline transmission (R = 1·1) is
assumed throughout the paper, it should be noted

that the actual R values are heterogeneous for differ-
ent populations (depending, for example, on the vac-
cination coverages), thus this paper describes a
conditional calculation, a ‘what-if’ analysis, describing
what happens if the importation and silent transmis-
sion (R = 1·1) has already occurred.

METHODS

First, a simple model will be discussed where the
population is divided into ‘vaccinated’ and ‘unvaccin-
ated’ compartments. After that, the model will be
extended to take into account the differences between
IPV and OPV.

Two-compartment model

To illustrate our logic, consider first a two-
compartment case, i.e. ‘unvaccinated’ and ‘vacci-
nated’ compartments of the population. A single
index case exposes R0 people to polio, where R0

denotes the basic reproduction number of the disease.
Assuming homogeneous mixing within the popula-
tion, this will mean R0·(1−V) unvaccinated and
R0·V vaccinated people exposed, where V is the pro-
portion of the population vaccinated. Denoting the
vaccine’s effectiveness against infection (thus, the
shedding of the virus) VEinf, we will have R0·(1−V)
and R0·V·(1−VEinf) infected people after the first
generation in the unvaccinated and vaccinated com-
partments, respectively. Note that VEinf is not the
‘traditional’ vaccine effectiveness which is defined as
the effectiveness against clinical disease [13]. In the
current context, this is related to the mucosal immun-
ity conferred by the vaccine.

Therefore we have

R0 · 1−V( ) +R0 ·V · 1−VEinf( ) =R0 · 1−V ·VEinf( )
infected in the population after the first generationwhich
will be the effective reproduction number (R) of polio
infection; thus we also see that R0 =R/(1−V·VEinf).

At this point, instead of multiplying the number of
infected in both compartments by C, the correct cal-
culation goes on to presume that we will have
R0·(1−V)·C clinical cases only in the unvaccinated
compartment; however, in the vaccinated compart-
ment we will have only

R0 · V · 1− VEinf( ) · 1− VEclin( ) · C
manifest cases, where VEclin represents the effective-
ness of the vaccine to protect an already infected
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subject from developing clinical disease (i.e. it is a con-
ditional probability). In this context, this will be
related to the systemic immunity conferred by the vac-
cine. Thus, the number of clinical cases will be

R0 · 1−V( ) ·C +R0 ·V · 1−VEinf( ) · 1−VEclin( ) ·C
= R0 ·C · 1−V( ) +V · 1−VEinf( ) · 1−VEclin( )[ ]

after the first generation resulting from a single index
case.

It should be noted that the usual vaccine effective-
ness (i.e. effectiveness against clinical disease) is

VE = 1− 1− VEinf( ) · 1− VEclin( ).

Substituting this to the previous formula, we obtain
that the number of clinical cases will be

R0 · C · 1− V( ) + V · 1− VE( )[ ]
= R0 · C · 1− V · VE( ),

or, equivalently, using the effective instead of basic
reproduction number

R/ 1− V · VEinf( ) · C · 1− V · VE( )
after the first generation.

After n generations, the number infected will be
(Rn+1− 1)/(R− 1) and not R, therefore the number
of clinical cases will be

Rn+1 − 1
R− 1

· 1
1− V · VEinf

· C · 1− V · VE( )

= Rn+1 − 1
R− 1

· C · 1− V · VE
1− V · VEinf

( )
.

The factor in parentheses at the right hand side is the
correct multiplier that should be used (instead of C).
We designate this the effective case/infection ratio, or
Ceff, and designate the multiplier of C, i.e. the correc-
tion factor that should be used to take the vaccination
of the population into account, φeff. That is, here

φeff =
1− V · VE
1− V · VEinf

,

and to determine the expected number of transmission
generations that are necessary to reach one case of AFP
we must solve the equation

Ceff · Rn+1 − 1
( )

/ R− 1( )
= C · φeff · Rn+1 − 1

( )
/ R− 1( ) = 1

with respect to n. Here, R specifies the predetermined
level of ‘borderline transmission’, e.g. R= 1·1 as in
[11], or any other desired level.

By solving this, we obtain that logR[1 + (R− 1)/
(C·φeff)]− 1 transmission generations are expected to

be needed for the first clinical case to appear, hence
the expected time to detect the virus circulation (here-
after designated ‘time-to-detect’), assuming that only
AFP surveillance is used, is

tgen · logR 1+ R− 1
C · φeff

( )
− 1

[ ]
,

where tgen is the generation time of polio, assumed to
be tgen = 10 days [14]. The number of infected until
this time (hereafter designated ‘infected-to-detect’)
will be 1/(C·φeff)

Three-compartment model

The two-compartment approximation is inadequate
as it cannot accommodate the IPV and OPV vaccina-
tions, which is a crucial component in real-world
settings. Thus, we have to extend this approach
to include three compartments: ‘Unvaccinated’,
‘Vaccinated with OPV’ and ‘Vaccinated with IPV’.
[The question might be raised whether a ‘Vaccinated
sequentially (i.e. IPV followed by OPV)’ compartment
is needed. However, the immunity profile conferred by
this schedule is similar to the one from the OPV-only
schedule [15], so for simplicity we will consider those
vaccinated sequentially as if they were vaccinated
with OPV.]

It is straightforward to extend the logic seen above
for this case (the role of the IPV and OPV compart-
ments is symmetric, but with different coverage and
vaccine-effectiveness parameters, which appear as
multipliers in the formula), the result will be:

φeff =
1− VOPV · VEOPV − V IPV · VEIPV

1− VOPV · VEOPV
inf − V IPV · VEIPV

inf

,

and the equation for the detection of the first AFP
case is the same with R≈1·1 and Ceff =C·φeff again.
The formulae to calculate the time-to-detect the first
clinical case, and the number of infected until this
time is unchanged (with the new φeff applied).

While this result is theoretically sound, quantitative
estimation is bound to run into serious difficulties due
to the limited information available to numerically es-
timate the parameters that appear in the above formu-
lae. Owing to the high variability in the estimates of
these parameters, there is no point in aiming to obtain
more than an approximate Ceff. We also perform a
sensitivity analysis in order to ensure robustness with
respect to this uncertainty.
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Calculating vaccine coverage

The proportion of the population vaccinated with
OPV and IPV (i.e. VOPV and VIPV) was calculated
using population age distribution as of 1 January
2013. For countries that always used IPV-only sched-
ule, the number of (IPV) vaccinees were calculated
exactly for birth years where vaccine coverage was
available, for the remaining birth cohorts, the average
of all vaccine coverages was assumed as the vaccine
coverage. For countries that switched from OPV to
IPV, the number of IPV vaccinees were calculated
exactly, the number of OPV vaccinees were calculated
using the average vaccine coverage for the OPV-only
years. We considered that only those who are vacci-
nated are protected, i.e. we neglected the possible
spread of the vaccine virus (which is possible for
OPV, but unlikely to play a significant role).

Information on vaccine coverage was extracted
from the World Health Organization’s Centralized
Information System for Infectious Diseases (CISID)
[16]. This relies on national coverage reports and
WHO/UNICEF coverage estimates, the methodology
is described elsewhere [17]. Indicator number 3004
(‘Polio3 –% of infants vaccinated against’) was
employed in the present study.

To assess the size of birth cohorts, we used the data-
set demo_pjan from Eurostat [18].

The historical changes in vaccination schedules, in
particular the switch from OPV to IPV was deter-
mined using data from the European Centre for
Disease Prevention and Control [9].

Spreadsheet data compiled from the above data
sources is presented in Supplementary Table S1.

Calculating vaccine effectiveness

As far as the VEinf values are concerned, the best in-
formation we can use are studies that measured vac-
cine virus shedding after OPV challenge. From a
recent review [19] we can deduce VEOPV

inf = 0·87 and
VEIPV

inf = 0·19 (by subtracting the odds ratios against
shedding presented there from 1). Note that this ap-
proach means that for calculation of VEinf, only the
fact of shedding (i.e. whether infection occurred at
all or not) is taken into account, but not the duration
of shedding or the quantity of shed virus. This can be
justified by the currently used definition of VEinf, in
which only the fact of infection matters (duration of
shedding and quantity of shed virus is relevant only
for the exposure of the environment).

For VE, we can use VEOPV =VEIPV = 0·9, which is
reasonable for developed countries [20].

Sensitivity analysis

As the parameters used in the devised model (especial-
ly VEinf) are only known with substantial uncertainty,
sensitivity analysis was also undertaken, using Monte
Carlo simulation [21]. In this approach, the para-
meters are assumed to have a distribution (as opposed
to being fixed values), therefore their functions, such
as time-to-detect the first case, will also be random
variables. However, the exact distribution of these
functions is often unfeasible or impossible to analytic-
ally derive from the distribution of the inputs and the
functional form, so instead it can be empirically
approximated by generating many random variates
from the input’s distribution, transforming them
according to the function, and then estimating the dis-
tribution from those transformed variables [21]. This
method can be viewed as a way to improve robustness
against the uncertainty of the parameters.

In the current case, sensitivity analysis was per-
formed with respect to both VEinf values. Their distri-
bution was presumed to be independent truncated
normal with the mean given by the point estimate al-
ready introduced, and the standard deviation being
0·04 for VEOPV

inf and 0·13 for VEIPV
inf . These values

were chosen so that the resulting distributions’ disper-
sion roughly corresponds to the confidence intervals
already known [19]. Truncation was done at [0, 0·9]
to ensure that both VEinf and VEclin values are be-
tween 0 and 1. One million random variates were
simulated and the resulting distribution was recon-
structed with kernel density estimation [22].

Programs used

Sensitivity analysis, visualization and additional
calculations were performed under Wolfram
Mathematica v. 10.0 [23]. Full source codes are avail-
able from the corresponding author upon request.

RESULTS

Parameter φeff as a function of vaccine coverages is
shown in Figure 1.

Table 1 shows the estimated parameters, together
with the length of time-to-detect of the first clinical
case (i.e. silent transmission) and infected-to-detect
that is derived from them.
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Figure 2 shows the results of sensitivity analysis for
time-to-detect in case of a few representative countries
(that were chosen to exemplify the practically occur-
ring combinations of vaccine coverages in European
countries).

The Netherlands and Norway represents the
IPV-only countries (with relatively high and low IPV
coverage, respectively) which have the highest
time-to-detect values and also their peaks in Figure 2

are broader than the mostly OPV-vaccinated Western
European countries (Austria and France), since they
are more sensitive towards the VEIPV

inf to which a higher
standard deviation value was chosen during the sensitiv-
ity analysis. Bulgaria represents the Central and Eastern
European countries with very high OPV vaccination
coverage and hence with the lowest time-to-detect
values. The broadness of its peak can be explained by
the very low proportion of unvaccinated individuals.

Fig. 1. Parameter φeff (i.e. the factor with which the case/infection ratio should be multiplied to obtain the effective case/
infection ratio in a given population) as a function of vaccine coverage. Panel (a) shows it as a three-dimensional plot;
panel (b) depicts the same function as a contour plot, with the colour scale indicating the function value. Red lines in (b)
indicate locations of equal (overall) vaccine coverage, with dots depicting selected representative countries (BG, Bulgaria;
AT, Austria; FR, France; NO, Norway; NL, The Netherlands).
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DISCUSSION

The length of silent transmission, i.e. the time needed
to detect the first infected by traditional means (i.e.
AFP surveillance and not environmental surveillance)
depends on vaccine coverage both from OPV and IPV,
in a nonlinear way. With all other things being equal,
increasing coverage from either of them decreases the
effective case/infection ratio (thus increasing the
length of unnoticed transmission), but this is almost
negligible for OPV, although rather substantial for
IPV. If the overall coverage is considered fixed, the ef-
fective case/infection ratio radically decreases with in-
creasing proportion of IPV coverage. In other words,
the effective case/infection ratio will be lowest for
countries where (1) overall vaccine coverage is high
and (2) the proportion of IPV within this coverage is
also high. Decreasing effective case/infection ratio

means increased length of silent transmission (thus
increased number of infected until the outbreak is
detected), therefore the effect of increasing vaccine
coverage might be – in this sense – counterintuitive
for time-to-detect and infected-to-detect.

In European countries, assuming borderline trans-
mission (R= 1·1) the length of unnoticed transmission
is between 326 days and 512 days using the developed
model. In line with the previous remark, those countries
are at the lower end, where the overall vaccine coverage
is low or the proportion of IPV coverage is low within
the overall coverage (e.g. Portugal, Cyprus or Malta
on the one hand, and Bulgaria, UK or Germany on
the other), and those are at the higher end where the
overall vaccine coverage is high and the proportion of
IPV coverage within the overall coverage is also high
(e.g. The Netherlands, Norway or Denmark).

Table 1. Estimated vaccine coverage together with φeff and Ceff parameters calculated from them and the resulting
time-to-detect and infected-to-detect for each investigated country

Country
IPV-only
introduction

VIPV

(%)
VOPV

(%)
V
(%)

VIPV/V
(%) φeff Ceff

Time-to-
detect
(days)

Infected-to-
detect
(days)

Austria 1999 10·32 78·26 88·58 11·65 0·6769 0·003385 349 295
Belgium 2001 13·36 81·82 95·19 14·04 0·5455 0·002727 371 367
Bulgaria 2010 2·66 93·86 96·52 2·76 0·7361 0·003681 340 272
Cyprus 2002 11·75 70·24 81·99 14·33 0·7150 0·003575 343 280
Czech Republic 2007 6·61 91·18 97·79 6·76 0·6174 0·003087 358 324
Denmark Always 95·05 0·00 95·05 100·00 0·1764 0·000882 487 1134
Estonia 2008 5·45 87·30 92·75 5·88 0·7179 0·003590 343 279
Finland Always 94·43 0·00 94·43 100·00 0·1830 0·000915 483 1093
France 1990 27·45 63·36 90·81 30·23 0·4606 0·002303 388 434
Germany 1998 12·43 76·48 88·91 13·98 0·6424 0·003212 354 311
Greece 2005 7·79 86·09 93·88 8·30 0·6565 0·003282 352 305
Hungary 2006 6·65 92·39 99·04 6·71 0·5918 0·002959 362 338
Iceland Always 97·05 0·00 97·05 100·00 0·1552 0·000776 501 1289
Ireland 2001 16·25 65·13 81·38 19·96 0·6649 0·003324 351 301
Italy 2002 9·84 84·20 94·04 10·47 0·6175 0·003088 358 324
Latvia 2009 3·63 91·76 95·39 3·81 0·7263 0·003631 342 275
Lithuania 2005 7·36 82·60 89·96 8·18 0·7118 0·003559 344 281
Luxembourg 2006 7·80 86·70 94·50 8·26 0·6474 0·003237 353 309
Malta 2010 2·66 81·15 83·82 3·17 0·8503 0·004252 326 235
The Netherlands Always 96·88 0·00 96·88 100·00 0·1570 0·000785 499 1274
Norway Always 87·15 0·00 87·15 100·00 0·2584 0·001292 448 774
Poland 2008 5·13 91·30 96·43 5·32 0·6743 0·003372 349 297
Portugal 2006 6·28 70·51 76·78 8·17 0·8246 0·004123 329 243
Romania 2008 4·66 90·16 94·82 4·91 0·7092 0·003546 344 282
Slovakia 2005 8·32 90·21 98·53 8·45 0·5678 0·002839 367 352
Slovenia 2003 9·56 84·82 94·37 10·13 0·6175 0·003087 358 324
Spain 2006 7·08 83·90 90·98 7·78 0·7060 0·003530 344 283
Sweden Always 98·56 0·00 98·56 100·00 0·1390 0·000695 512 1439
UK 2004 10·22 80·78 91·00 11·23 0·6516 0·003258 353 307
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The range of 326–512 days is in contrast with the
results of Eichner & Brockmann [11]; in their article,
which neglects the effects of IPV coverage, the length
of unnoticed transmission is given as ‘nearly 1 year’
(309 days, precisely). Thus, more elaborate analysis
shows that the actual length of silent transmission
might be more than 50% longer than what can be
derived from the simpler model, depending on the cir-
cumstances (i.e. vaccine coverage).

It also instructive to contrast these results with their
theoretical limits. For zero vaccine coverage (from
both types of vaccines), the effective case/infection
ratio will be the same as the traditional case/infection
ratio (0·5%), resulting in the already mentioned 309
days, with 200 infections until detection. At the
other extreme, with perfect coverage from IPV, the
duration of unnoticed transmission is 524 days, with
1620 infections. It can be seen that European coun-
tries span the entire spectrum quite well.

It is worth noting that the time-to-detect depends
on what R we presume as ‘borderline’ (e.g. R = 1·1),
but the φeff does not, therefore the infected-to-detect
also does not, as it only depends on effective C.

Sensitivity analysis reveals some uncertainty in
these results due to parameter uncertainty, but quali-
tatively, the conclusions are left unaffected. For in-
stance, the variation in the time-to-detect the first
infected is about ±25–50 days, depending on the
exact circumstances.

It should be noted that ‘worst-case’ now means a
large number of infected, not a large number of (clin-
ically) ill, so one might wonder whether this phenom-
enon is worrisome at all. While directly there is no risk

of disease involved for the majority of those who are
IPV vaccinated even if they are carriers, first, there is
always a minority (as the IPV’s effectiveness is not
100%, even against clinical disease), and second, not
everyone can be vaccinated, for instance due to their
age. Moreover, lengthy time until detection can
make the traditional outbreak response methods,
such as contact tracing, very complicated or down-
right impossible, thus this is still relevant for public
health purposes.

Note that the above calculation assumes that the
very first AFP case is detected, and the outbreak is in-
stantly identified (in line with Eichner & Brockmann
[11]). This is clearly not a realistic assumption, since
the sensitivity of AFP surveillance can never be
100%, even in developed countries [24, 25]. The effect
of sensitivity on the investigated outcomes is not lin-
ear. To see this, we denote sensitivity with s, then
the equation to be solved is not

C · φeff · Rn+1 − 1
( )

/ R− 1( ) = 1, but rather

C · φeff · Rn+1 − 1
( )

/ R− 1( ) = 1/s

(as s sensitivity means that only every (1/s)th case is
identified as such). Thus, the actual time-to-detect
the outbreak, taking the sensitivity of the surveillance
into account is

tgen · logR 1+ R− 1( )/s
C · φeff

( )
− 1

[ ]
,

and the number of infected until this point is 1/(Cφeffs)
using the same logic. This is illustrated on Figure 3 for
a few selected European countries. It can be seen that
the effect of non-perfect surveillance sensitivity is not

Fig. 2. Distribution of time-to-detect under parameter uncertainty for selected representative countries (BG, Bulgaria; AT,
Austria; FR, France; NO, Norway; NL, The Netherlands).
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substantial up to about 30–40%, and it has much more
profound impact on infected-to-detect than on
time-to-detect. (Understandably, as the number of
cases rises increasingly faster due to geometric growth
if more transmission generation is allowed. Imperfect
surveillance acts as if φeff were further decreased.)

Finally, it is important to emphasize that this model
in no way predicts the probability of such importation
of polio to Europe, i.e. that transmission begins. The
calculation of the actual R values (which can be highly
heterogeneous for European populations) or the deter-
mination of the probability of a continuous transmis-
sion (R> 1) are beyond the scope of this paper: R
depends on vaccine coverage, contact patterns, dem-
ography, hygiene, etc. The presented calculation is
conditional, a ‘what-if’ analysis, describing what hap-
pens if the importation and silent transmission (R =
1·1) has already occurred. Note that presuming differ-
ent countries have the same R is unrealistic, thus com-
paring countries with each other is only valid for
infected-to-detect (which does not depend on R) at

first glance. Nevertheless, the comparison of
time-to-detect still makes sense, as it allows investiga-
tion of how IPV and OPV vaccine coverage alters the
length of silent transmission in an outbreak.

Naturally, our model has several limitations. One is
that countrywide vaccine coverage data were used,
which neglects within-country spatial inhomogeneity
of vaccine coverage (clustering of unvaccinated indivi-
duals), which is otherwise known to be an important
factor in disease outbreaks. (This is a violation of
the compartmental models’ ‘perfect mixing’ assump-
tion.) Due to the fact that the transmission is more
likely to start and amplify in such – undervaccinated –
clusters, the detection might also be earlier, at least if
we assume equal quality of AFP surveillance, even in
such clusters. In a similar manner, ‘perfect mixing’ as-
sumption also neglects every stratification of the popu-
lations, such as their age and sex distribution; despite
the fact that age definitely has a profound impact on
the spread of polio. This is, however, unlikely to intro-
duce a systematic error as there are no marked

Fig. 3. Impact of the sensitivity of acute flaccid paralysis (AFP) surveillance on the (a) time-to-detect and (b)
infected-to-detect for selected representative countries (BG, Bulgaria; AT, Austria; FR, France; NO, Norway; NL, The
Netherlands).
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differences in European countries’ age and sex com-
position, apart from the fact that IPV coverage
might vary substantially for different age groups.
Nevertheless, it would be straightforward to extend
the model to incorporate such strata by the introduc-
tion of additional compartments (at the price of the
introduction of further parameters that are to be esti-
mated), should it be deemed necessary. Finally, the
model presumes a deterministic reproduction from
generation to generation (i.e. it is governed by the sin-
gle parameter R). While this is acceptable if R is con-
sidered to be an expected value, a finer analysis would
be possible by recasting the problem as a, possible
multi-type, branching process, which is often applied
to describe epidemics [26]. In the branching process
approach, the number of secondary infections is con-
sidered to be a true random variable (not a single
number), allowing more precise modelling, which is
valid if the number of infected is small compared to
the whole population (as is the case in the present situ-
ation). This, however, comes at the price of more com-
plicated mathematical structure.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268816000078.
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